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The main result concerns rational approximations to Markov-Stieltjes functions
in the dual spaces Lt'/H P, I ~ P ,;;; en, on the unit circle of the complex plane. For
fixed n we consider approximation by rationals whose denominators have n dif­
ferent zeros all with double multiplicity. In general these rationals are of order 211
but we show that there is a best approximating one and that this one is of order
n only. This result gives a new approach to previous results by Barrett and Goncar.
As an example of application we study the degree of approximation of (I - z)' in
BMOA and uniform norms. (() 1994 Academic Press, lnc.

1. INTRODUCTION

Consider a Markov function

(l(z) = fb dfl(t) ,
a Z - t

(1)

where dfl is a positive measure on [a, b] c ( - I, I), We assume that the
support of dp. contains infinitely many points. In this report we show that
if we for a given n approximate {l on Izi = 1 in the norm of LP!H P,
1~ P ~ 00, by rational functions of the form

~ ( ak bk )r(z)= 1-. --+ 2
k=1 z-tk (z-td

then the best approximating r is of type

This gives a somewhat different approach, e,g., to the so-called p2-results
by Barrett [3, 4] and Goncar [10, 11].
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At the end we apply this to the problem of estimating the order of
rational approximation in H I' and dual spaces of functions of type

f II w(t) dt
(z)= --,

1 1-zt

where w is a non-negative weight function. Special attention will be paid to
uniform and BMOA-norms. In that context we in particular study the
order of approximation of (1 - z )'.

The basic ideas used are given in the papers [1, 2, 5] by the author and
B. Bojanov for the case 1 < p < CI:;. In the situation we have here it is
however possible to give an easier, complete presentation, covering also the
cases p = 1 and p = 00. But in Sections 4 and 5 the influence from Bojanov
[5J is strong.

2. NOTATIONS

Some of the notations that will be used are the following.

p, q are conjugate exponents, i.e., p -I + q -I = I, with 1~ p ~ 00.

D is the unit disc Izi < 1 in the complex plane C-

U' is on the unit circle with the convention that C" is the space of
continuous functions on this circle.

H I' is the usual Hardy space on D if 1~ p < 00 but H x is the
space of analytic functions on D that have continuous extensions to its
closure.

11/[11' is ((l/2n) JI/(z)iP Idzl)liP if 1~ P < 00 and is the supremum
norm if p = 00. (Here and in the sequel the integration is over the unit
circle unless otherwise specified.)

111111'. is the norm of I in L"/HI', i.e.,

111111'. = inf{ III - hilI': h E HI'}.

Z = (zJ, ..., z,,) is a point in C".

Bz is the Blaschke product Bz(z)=fIZ=1 (z-zk)/(I-zkz))((z-id/
(1- Zk Z )) .

.g{l(z) is the class of rational functions that vanish at infinity and
have the denominator ITZ = 1 (z - zd(z - zd. Further notations will be
introduced later.
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3. THE MAIN RESULT
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Let us assume that fl is a fixed Markov function as in (1) and that n is
a fixed positive integer. We define first for all ZED"

ep(z) = inf{ Ilfl- rll p': rE 9£'(z)}

and then

For these quantities we have the following result.

THEOREM 1. Assume that 1~ P~ 00 and that n is positive integer. Then
the following holds.

(i) There is a t = (t I' ... , I,,) with a < t J < ... < t" < b such Ihal

(ii) For this t there is a unique roE .~(t) so that

(iii) This ro is of the form

with all Ok ~ 0

and is consequently of order n at most.

Remark. The important feature in the theorem is that though the
elements of 9£'(t) in general have order 2n the best approximating one has
order n at most.

The outline of the proof is as follows. Parts (i) and (iii) will be given as
two separate sections (4 and 5) while part (ii) is given after the following
lemma.

LEMMA I. Suppose that 1~ P~ 00 and zED". Then the following is true.

(i) ep(z)=sup{IJ: g(t)B z (t)dJ1(t)I: gEHq, Ilg'lq~ I}.

(ii) There exists an extremal function g realizing equality in (i).

(iii) This g can be assumed to be positive on (-1, 1) and H'ilhout zeros
in D.
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Proof In the space LP/H P we have the equality

(2)

Since B z is a Blaschke product, we can therefore conclude that

(3)

which by duality gives

Using the definition (1) of 11 we see that (3) may also be written as

That takes care of part (i) of the lemma. .
The duality results that we use in this context can all be read in Duren's

book [6]. In particular [6, Theorem 8.1] gives part (ii) of our lemma since
BJl is continuous on the unit circle.

For part (iii) we observe that if g is an extremal function for (5) then, so
is (g(z) + g(zll/2. So the extremal function can be assumed to be real on
( - 1, 1). Suppose that this g has zeros in D. Since g is real on (- 1, 1),
these zeros are symmetric with respect to (- 1, 1). Let B be the Blaschke
product of the zeros and be chosen so that h = g/B fulfils h(O) > O. Then h
is positive on (-1, 1). Since moreover 0 < Bz(t) < I for all t E (-1, 1),
except for at most a finite number of points, and the support of dp consists
of infinitely many points, we have

rg(t) Bz(t) dp(t) <rh(t) Bz(t) dp(t).
a a

But then g is not extremal. Hence g cannot have zeros in D and is therefore
also positive (-1, 1). This proves Lemma 1.

We end this section by proving (ii) in Theorem I. Again we refer to
Duren [6, Theorem 8.1]. Since Bz,1 is continuous on Izj = 1, we find by (2)
and (3) that for each Z E D" there is a unique roE ~(z) such that
11,1 - roll p ' = ep(z).
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4. THE EXTREMAL t

We first prove that real poles suffices.

LEMMA 2. inf{ep(z):zEDn
} =inf{ep(x):xE [a,br}·

Proof We observe that

(i) ifw=u+ivED, then
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It-wI It-U!
1- i't ~ 1- ut

for t E ( - 1, 1);

(ii) if UE( -1, 1)\[a, bJ then with either c=a or c=b

I
t-u/ jt-c/
1- ut ~ 1-ct

for tE [a, b].

Consequently for each Z EDn there exists an x E [a, bJ n such that
Bz(t)~Bx(t) for all tE[a,b]. Using Lemma 1 and (5) we find that
ep(x)~ep(z). Now we are ready to prove the existence of optimal poles.

LEMMA 3. For 1~ p ~ 00 there exists a t = (t l' ... , tn)E [a, b]n such that

(i) ep(t)=inf{ep(z):zED n
}

(ii) a<t1<···<tn<b.

Proof Using Lemma 2 we see that there exists a convergent sequence
(xd~ of points in [a, bIn such that

lim ep(xk)=inf{ep(z): zED n
}.

k-w

Let t = lim Xk' Then t E [a, b]n and B
Xk
~ B t uniformly on [a, b]. With g

as an optimal function for t in (5) we see that

Hence t is optimal and part (i) is proved.
In order to prove (ii) we assume that the coordinates of t take on m

different values, 1 < ... < 'm' We represent t as the matrix
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where Ilk is the number of times the corresponding !k is repeated in t. Then
Lt~ I Ilk = n and Ilk ~ I for each k. Our assertion that m = n follows if we
can show that 11k = 1 for all k.

Suppose that Ilk> 1 for some k. For h > 0 but close to 0 we form points
t h E D" by

!k- h !k !k+ h !k+l !m).

I 11k - 2 1 11k + I 11m

In the following estimates it is no loss of generality to assume that !k = 0
since we may arrive at this situation after a Mobius transformation. Then

and

where

For each h we let gh be the extremal function in (5) with z=th. Since
Ilghllq= 1 we can conclude that {gd is a normal family on D. So there is
a sequence (h,)~' with h; -> 0 such that the gh

l
converge uniformy on every

compact subset of D to a limit function gEHq with IIgllq~ I. Moreover,

IILg(t) B, (t) dll(t) =}~~c ep(th) ~ ep(t)

so g is extremal for t and consequently positive on [a, b].
For ep(th ) we have the inequality

Since

we get with h = hj

II

ep(t h ) ~ ep(t) - h2 f 2t 2(1 - t4
) B(t) g(t) dJl(t) + 0(11 2

)
a

as j -> CfJ. Here the integral is positive so we have a contradiction to the
fact that ep(th ) ~ el'(t) for all h. Consequently we must conclude that 11k = 1
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for all k. Thereby, apart from the inequalities a < t I' In < h, the lemma is
proved.

These remaining inequalities can be obtained in a similar way. Suppose,
e.g., t 1 = a. Then for h > 0 but close to 0 we can let

and proceed as above to get a contradiction.

5. THE OPTIMAL COEFFICIENTS

As already remarked in the proof of part (ii) of the theorem in Section 3,
there is for each Z E D n a unique, optimal Yo E 9l'(z) such that

This Yo can in general be represented in the form

To complete the proof of the theorem, we must prove that we have
ak ;;::0 0 and bk = 0 for all k when z = t as in Section 4. So let ak and hk be
these coefficients. Fix a k and let h be a real number so close to zero that
z with Zj = Ij if j -j:. k and Z k = I k + h, fulfils - 1 < Z 1 < ... < Z" < 1. Let also
gil be an extremal function in Hq with Ilg"ll q = 1 so that

ep(z) = rg,,(t) Bz(t) dJ1(t).
a

We have assumed that '0 is best in 9l(t), so ep(t) = 1lj1- roll p " Since
IIg"Bzllq = 1, we therefore get

Using the definition of j1, we can evaluate this integral by residues. So we
have

ep(t);;::O If g,,(t) Bz(t) dJ1(t) -,tl (aj(g"Bz)(t j)+ bj(g"Bz)' (t j ))!

= lep(z) - ak(g"Bz)(ld - hk(g"Bz)' (lk)l·
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For the last equality we have used the fact that both ghBz and its derivative
vanish at the points I j when j #- k. All the quantities involved are real, so
we can conclude that

From this we see that

(6)

for each h sufficiently close to zero.
Now Bz can be written

Bz(t) = Yh(t - t k - hf

with h'h} and {y~} uniformly bounded on [a, b]. Since {gh} and {g~}

also are uniformly bounded on [a, b], we get from (6) that

(7)

As in the previous section we can pick a sequence (hj)~ tending to 0 + so
that gh converges uniformly on [a, b] to a function g with g(tk»O. Since

J

moreover

the inequality (7) gives bk=O.
The maining inequality ak ~ 0 now follows directly from (6). That

completes the proof of Theorem I.

6. ON THE ORDER OF ApPROXIMAnON

In this section we investigate the consequences of Theorem I for the
order of rational approximation of functions

f(z) =r W(/) dt,
--I 1- lz

(8)

where w(t)~O on (-1,1).
Let R n denote the class of rational functions of order n at most and with

all its poles in Izi > 1. Also, let F! P denote the class of functions h such that
the function g defined by g(z) = h(ljz) is in H P and g(O) = O. For each
f E H P we introduce the norm

IIf11; = inf{ II! - hll p : hE F! P}
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and mearsure at first the order of approximation by

Later we relate this to the approximation in H p

pp,,lfl = inf{ lif - rll p: I' E RIl }·
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THEOREM 2. Let 1~ P ~X) alld let f he as ill (8) where we assume that

fl] w( t)( 1- t 2 ) " l/q dt <XJ

and that

If wet) log(l- t2
)- I dt < oc

- 1

Then

if p> 1

if p=1.

for each Z E D".

Proof Let 0 < a < 1 and define fa by

f
a w(t)

J:,(z) = 1- " dt.
a ~t

(9)

Define the measure dll as the restriction of w( t) dt to the interval [ - a, a].
We observe that

. 1 (1)I,(z)=; 11 ; for [zl ~ 1.

To this [J we apply Theorem 1 and get the optimal poles t and function
1'0 E Rn so that

For any hE H P we have with II' = liz that

wl1(w) - wro(w) - whew) = f,(z) - ~ 1"0 (~) - ~ h (~).

640.76/2-7
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Returning to Theorem 1 we know that

With r,(z)=z-Iro(z-') and g(z)=z-Ih(z-') we see that r,ER" and
g E if l'. Moreover we observe that

This leads to

11.1:, - rllll~.:s; el'(t)

and consequently since ep(t) is minimal also to

p;"Ua).:s;ep(z)

for each ZED". Using (i) in Lemma 1 and Holder's inequality we observe
that

where

M=sup{lIgllu( 1.'I:g EHq,llgll q =1}.

From the inequality by Fejer and Riesz [6, Theorem 3.13] we obtain that
M::;; n. So we get the estimate

ep(z)::;; n IlwBzl1 U(- L I)'

Since this estimate is independent of a and the conditions that we have on
w implies that Ilf - jJp -7 0 as a -71 -, we get the estimate (9) in the
theorem. So the theorem is proved.

Turning to the problem of estimating Pl'. flU), we know by M. Riesz'
inequality [6, Theorem 4.1] that for 1 < P < CfJ there is a constant Cp such
that

If p = 1 or p = CfJ we do not know whether such an inequality is valid.
However, for these cases we have at least the following result.

LEMMA 4. Assume that p = 1 or CfJ and that f E HI'. Let f«z) = f(xz) for
0< x < 1 and Izi ::;; 1. Then there is a constant C such that

PP.,,(f)::;;C inf (1If-fJp+p;'"U)·log(l-.xr').
O<x<1
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Proof Take functions r ERn and hE fi P so that

and observe that

f,(z)_r(xz)=~ff(O-r(O-h(Od(
. 2m (- xz
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for Izi ~ 1 and 0 < x < 1. Then the lemma follows.

In many situations the consequence of using Lemma 4 is that we get an
extra logarithm in going from P; n to PP• no

COROLLARY. If there are constants Co and IY. > 0 so that Ilf - fJ p ~

Co(l - x y then for n sufficiently large

PP. nU) ~ Cp;. nU) ·Iog P;. nU) - I

for some constant C.

Proof Use X= l-P;.n(f)I/, in Lemma 4.

Remark. The passing from P~. n to PT., n is of special interest since P~. n
is the order of approximation in a norm that is equivalent to the BMOA­
norm. For details on BMOA, see, e.g., Koosis [12].

7. ApPROXIMATION OF (1 - z)' IN BMOA AND H u.

As an application of the preceding results, we study the approximation
of (l - z)'. In H P with 1< p < ex) we got a satisfactory description of the
error in our paper [1]. The estimates for PP. n from below in that paper
work also for the cases p = 1 and p = CfJ. So here we only consider estimates
from above and concentrate on the case p = oc. The case p = 1 can be done
similarly.

THEOREM 3. Let - 1 < a < 1 and rx > O. Suppose that

f(z)=f' w(t) dt,
a 1- zt

where 0 ~ w(t) ~ Co(l - t)' on [a, I) for some constant Co. Then there is a
constant C so that for n = 1, 2, ." the fol101ving holds.

(i) p~.Af)~Cexp(-rr~)

(ii) p.£.nU)~Cfiexp(-rr~).
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Proof It follows as in Ganelius [7] that the points z can be chosen so
that

jw(t) Bz(t)1 :S C exp(-n~)

for all t E [a, I). Thus the theorem follows from Theorem 2 and the
corollary of Lemma 4.

As was done in Andersson [I, Sect. 6], we get from the theorem also the
same estimates whenf(z)=(I-z)'.

We end this paper by also deriving a result for the degree of approxima­
tion of x' on [0, I] in the uniform norm. So let for continuous functions
fan [0, t]

dll(/) = inf Ilf - I'll L" [0.1]'

where the infimum is over all rational functions of order n at most.

THEOREM 4. For each a> 0 there is a constant C such that

dll(x'):s C~ exp( -2n jan)

for all positive integers n.

Remark. From Ganelius [8] we know that there is an estimate from
below without the extra factor fi and also that this ~ in front of exp
is superfluous also in the estimate from above if a is rational. For irrational
a the estimate given there however is

dll(x'):s C exp(n 1/4) . exp( - 2n '\/~)'

So for that case our theorem gives an improvement though the factor ~
should not be there at all. Recently, Stahl [13] has announced this in a
very precise result. Theorem 4 is therefore included mainly because it is an
easy consequence of our other results.

In Andersson [t] we proved the corresponding result in U'[O, I]
without the extra ~ when 1< P < CD.

Proof The transition from the unit disc to the interval [0, I] can be
done via Faber technique. This technique is described in, e.g., Ganelius [9,
pp.22-24].

First we note that

, I f (1 - 0' v(I-x) =f(x)+-. ~ dl"
27[[ 1(1 ~ 2 ~ - X
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where

f
sin TUX f2 (t - 1)~ d

(x)=-- f.
rr 1 x-f

Then it follows as in Andersson [1, Lemma 5] that

Using the Faber technique, we also have

where

231

- I ffot/J(IV)
f(u) =-. dw,

2m IV - II
Ilil < 1

and t/J is the mapping of 111'1 > 1 onto the exterior of [0, 1] defined by
t/J(w) = (n'+ 1)2/41V. Taking b> 1 so that t/J(b) = 2 we get

j
""' sin Trex fh (ljJ(t) - 1r d
(u)=-- t

n I u-f

sin rrrx fIf> I (1 - t) 2~
= --- 4 -> ------df

n lih 1- lIf

and can apply Theorem 3 to have

PL.,,(])~ C3 fiexp( -2rr~)

and thereby the theorem.
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